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Abstract. The paper presents a method for calculating the low-temperature asymptotics of the
free energy of the three-dimensional Ising model in an external magnetiq field 0). In this

work an approach on the problem is employed, the main ideas of which were reported by the
author earlier by an example of the two-dimensional Ising model in an external magnetic field.
The results obtained are valid in the wide range of temperature and magnetic field values fulfilling
the condition [1— tant?(h/2)] ~ ¢, for e <« 1, whereh = BH, B is the inverse temperature and

H is the external magnetic field.

1. Formulation of the problem

As is well known, an exact solution for the two-dimensional (2D) Ising model in an external
magnetic field H # 0) has not yet been found. In the case of the three-dimensional (3D) Ising
model an exact solution for a vanishing magnetic field does not €fist 0), to say nothing
of the case of non-zero magnetic field. Despite the great successes in the investigation of
Ising models made by means of the renormalization group method [2] and other approximate
methods [1, 3-12] the problem of the calculation of various asymptotics for the 2D and 3D
Ising models in the external magnetic figl # 0) is still of great importance. In [1, 16] we
calculated the low-temperature and high-temperature asymptotics for the 2D Ising model in
an external magnetic fieldd # 0), as well as the free energy for this model in the limit of an
asymptotically vanishing magnetic field. In this paper we briefly discuss the calculation of the
low-temperature asymptotics for the free energy in the 3D Ising model in an external magnetic
field (H # 0), following the approach and the ideas we have introduced in [1].

Let us consider a cubic lattice built &f rows, M columns and planes, to the vertices of
which are assigned the numbets,,. from the two-entry set-1. These quantities throughout
this paper will be referred to as the Ising ‘spins’. The multi-indexk) numbers vertices
of the lattice, withn numbering rowsy: numbering columns, ankdnumbering planes. The
Ising model with nearest-neighbour interaction in an external magnetic field is described by
the Hamiltonian of the form

NMK
H=-— Z (Jlo'nmko—n+1,mk + J20umkOn,m+1.k + J30umkOnm k+1 + Hoymi) (11)
(n,m,k)=1

taking into account an anisotropy of the interaction between the nearest neighhouw's- 0),
and the interaction of the spiag,,; with external magnetic field, directed ‘up’(o,mx = +1).
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The main problem consists of the calculation of the statistical sum for the system:

Z3(h) = Z e Z e_ﬂH = Z eXp|: Z(Klan111kan+1,l1lk + KZOnmkUn,m+1,k

on==+1 onmg=%1 {Onmk==1} nmk
+K30nmk0nm,k+1 + hanmk):| (12)

whereK1,3 = 8J123, h = BH, 8 = 1/ksgT. Typical boundary conditions for the variables
o.mx @re the periodic ones. We take this standard assumption everywhere is the following. Let
us note here that the statistical sum (1.2) is symmetric with respect to the ottarge-h).

In this paper we consider a limited version of the problem, that is the calculation of the
low-temperature asymptotics for the free energy in the 3D Ising model in an external magnetic
field. More precisely, if the coupling constants , 3 = cons) and external magnetic field
(H = cons) are given, we consider the temperatures satisfying the conditien =, ¢ « 1.

To be more exact, we introduce a small parameter in the following way:

1—tantf(h/2) ~ ¢ e < 1. (1.3)

Then we consider the problem of the calculation of the free energy per one Ising spin in the
thermodynamic limit, with an accuracy up to the orderaf in expansions of the operators
associated with the spin interaction with an external magnetic field, as well as the interaction
of spin with each other (details of the approximation used will be presented later). To the
best of our knowledge, the problem formulated in this way has not been considered in existing
literature and is of considerable importance.

2. Partition function

Let us consider an auxiliary 4D Ising model in an external magnetic fieldn a simple
4D lattice (N x M x K x L). We write the Hamiltonian for the 4D Ising model with the
nearest-neighbour interaction in the form

H=-— E (Jlanmklgn+1,mkl + JZUnmklUn,m+l,kl +J3Gnl71klgn;1z,k+l,l +J46nmk16nmk,l+l+Hanmkl)
n,m,k,l

2.1)

taking into account the anisotropy of the interaction between the nearest neighhgus >

0), and the interaction of the spirs,,; with the external magnetic fielé, directed ‘up’
(oumu = +1). In equation (2.1) the multi-indeemkl) numbers the vertices of the 4D lattice,
and the indicesn, m, k, 1) take the values from 1 tGV, M, K, L), respectively. As in the
case of the 3D Ising model, we introduce periodic boundary conditions for the varghles
Then we write the partition functio4 (k) in the form

Z4(/’l) = Z e Z e_ﬂH = Z eXp|: Z(Klallink10)1+l,mkl

onn=+1  oymkr==%1 {owmi==1} nmkl
+K20nmk10n,m+l,kl + K3ollmklallm.k+l,l + K4Gi1771k10n171k,l+1 + hanmkl):| (22)

where the quantitiek; andh are defined as for (1.2) [13, 14]. We can rewrite expression (2.2)
using the well known method of the transfer matrix, in the form of a trace front th@ower
of the operatof:

Za(h) = Tr(T)- T = T, *Ts T, T T2 (2.3)
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where the operator, » 34, are defined by the formulae

Tl = exp <Kl Z Trfmkrtf+l,mk) T2 =exp <K2 Z Tomk T, n, m+l k> (24)

nmk nmk

T3 = exp<K3 > r,fmkrjmﬁl) Ty = (2sinh 2K ,)NMK/2 exp([(4 > nmk) (2.5)
nmk nmk

= exp (h > nmk) (2.6)
nmk

and the quantitieX, and K are coupled by the following relations:
tanh(K4) = exp(—2K}) or sinh 2K, sinh 2K; = 1. (2.7)

The Pauli spin matrices, ~* commute for(nmk) # (n'm’k’), and for given(nmk) these

matrices satisfy the usual relations [17]. It is easy to see that the maliiggs commute

with each other, but do not commute with the maffjx If the quantitiesk; = 0(i =1, 2, 3),

we immediately obtain the well known expressions describing the 3D Ising model on a simple
cubic lattice. Namely, the transition to the 3D Ising model with respect to the coupling
constantXy, K, or K3 is realized by taking K1 = 0), (K2 = 0), or (K3 = 0), and removing

the summation ovet (N = 1), m (M = 1) or overk (K = 1), respectively. As a result we
obtain the standard expressions [13] for the 3D Ising model in an external magnetic field. In
this process the operatdfs(i = 1, 2, 3) in every one of the cases are identically equal to the
unitoperato(7; = 1). Aslight different situation appears in the case of the transition to the 3D
Ising model with respect to the coupling const&nt In this case we takék, = 0, L = 1),

i.e. we remove the summation overAs a consequence, we obtain the following expression
for the operatof, from (2.5):

Ty = Tu(Ka=0) = [ [ +7,0 (2.8)

nmk

where we have used the relation (2.7). Then, after transition to the(lkyi= 0, L = 1) in
(2.3), we can write the following expression for the partition function for the 3D Ising model

Zsp(h) = To(T; T, * LT, %) (2.9)

where the matrice®; are defined asin (2.4), (2.6) and (2.8). Now we go over to the fermionic
representation. For this purpose one should write the maffige$erms of the Pauli operators

t* [14]
nmk 2( nmk + I."—n}mk) (210)

which satisfy anticommutation relations for one vertex, and which commute for different
vertices. Here, instead of Pauli operators

1y
nmk - 2( nmk + ITnmk)

we introduced, following [14] the new oneﬁjﬁfnk by means of formulae (2.10). The point is
that the transformations

" — 1t ¥ — -1 % = °

are the canonical transformations, which means that they are the same Pauli matrices which do
no change the commutation relations. These transformations are introduced in order to have
the exponents (2.4)—(2.6) containing only quadrafig4, operators in (2.6)) forms of Pauli
operatorg > but not the quaternary forms of these operators. As the next step one can move
on from the representation by Pauli operators (2.10) to the representation by Fermi creation
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and annihilation operators [1]. It can be easily checked that for the 3D case the generalized
Jordan—Wigner type transformations are of the form [16]

T = Eexp
o = XP|i
T =expli
Ty = €XP| i
T =expli
Tyt = EXP

N M k-1 N m—1
|7T< z : § : z :aqua\'ﬁﬂl + § : 2 :aspkaYl’k + Z :asmkamlk)] mk

s=1 p=lg= s=1 p=
N M k- n-1 M +
LODDITIIED 3) SLAHL SLAN| 14
s=1 p=14g=1 s=1 p:l
N m—1 K T N k— n—1
7 ( Z Z Z yqu Yspq + Z ysmq Vsmq + Z ysmkysmk>:| Yamk
s=1 p=1¢=1 s=1 g=1
N m-1 K + n-1 K k—1 "
17 ( Z Z nv anﬂq + Z Z ﬂqu Nsmgq + Z 77nm,, nnmq>i|7)nmk
s=1 p=1g=1 s=1g=1 g=1
n-1 M K + M k-1 m—1 +
7 ( Z Z Z Dspg@spg + Z Wppg®@npg + Z Oy Pnpk ]wnmk
s=1 p=14=1 p=1 q:l ,,:1
n—-1 M m—1
|7T( Z ZGY[%] spq + npqen[lq + Zenmq nmq)j| nmk (211)
s=1 p=1g= p=1q=1

and analogously for the operators,, which are the Hermman conjugations to (2.11). In

[1] we obtained formulae for the relations between various Fermi operators and commutation
relations for them for 2D case, which can be generalized to the 3D case. Indeed, the following
relationships for the local occupation numbers are valid:

‘L'

nmk T

nmk =

T T T
Ak Enmk = ﬂnmkﬂnmk = YVumk Ynmk = Mypp Mnmk = @y 0 Onmk = Qnmkenmk~ (212)

Then, applying the expressions (2.10)—(2.12) and considering results from [1], we can write
the partition function (2.9) in the form

Zsp(h) = (2cosi h/2)"ME(0|T*|0) = A(O|U + n2CU D|0) U =T/ T304 T] (2.13)

whereA =
of the form

and

(2 cosi h/2)NMK andu = tanh(k/2), and the operatorE, » 3, 7, andC, D are

N,M,K _I_
Ty = exp| K Z (C{nmk an111k)(a”+1 mk T On+1, mk)
n,m, k=1

B N,M,K
1T = exp K> Z (,By,mk .Bnmk)(ﬂn ,m+1k + ,Bn m+1, k):|

n,m,k=1

N,M,K

T3 = exp K3 Z (911mk nmk)(e,;rm_k+1 + 0/1m,k+l):| (214)
n,m, k=1

N—

3

M—m
ro__ 2
Th - exp{u |: anmkanh mk + Z : z : Olnka[n’ m+t,k + z : Z :anmkan 'm’ k+l:|}

mk nn'mk t= nn'mm’k 1=

=
wu

Tff = exp{ﬂz[ Qnm k+19nmk + Z Z 911 m+t, kenmk’ + Z Z enﬂ mkenm i| }

nmk =1 nmkk’ t=1 nmm'kk! s=

(2.15)

C= Zenmk D= ZaImk~

nmk

nmk
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Here and beIowZn,m,__l means summation over the complete set of indices =£
1,...,N;m=1,..., M;etc). Itis obvious that the operat6r
6= 3= al (2.16)
nmk

wheres$ is the operator of the total number of particles, commutes with the op@rata2.13).
Therefore, we can divide all states of the operdgtbinto states with an eve¢i.; = +1) or

odd number of particleé.; = —1) with respect to the operatd@¥, (2.16). The form of the
operatordl; , 3 does not change under such transformation, only the boundary conditions for
the operatorga,.«, ...) do. In the case of even stat@s; = +1), antiperiodic boundary
conditions are chosen and in the case of odd states, periodic ones are chosen [1].

The next step is the transition to the momentum representation:

+ _ eXF(lJT/4) Z —I(nq+mp+kv)§qpv ﬁT T er:rmk - gT

Dk = (NMK)1/2 nmk nqp\} qpv-*

Here we have mtroduced, interms of the occupation numbers foryed, the corresponding

&-, n- and¢-Fermi creation and annihilation operators in the finite-dimensional Fock space of
28 = 256 dimensions. Then, after a series of transformations and calculations we arrive at the
following formula for the partition function (2.13):

Z§D<h>=A( I A‘1‘<q>)< I1 A(u>)<0|T3*(h>Tsz<h>|0> (2.17)

O<gq,p,v<m O<gq,p,v<m

where the operatorg*(h), T> and Ty (h) are of the form

Tf(h) =exp[ Z Bl(Q)(S— —p— vsqpv Ej‘q—pv%‘(j]-) v E— gqp—v q pv S— pvéq pP— v)i|

O<g,p,v<m

ot
T = eXD{ZKz Z [COSp(nJ,,vnqpv +oo) Slnp(n_q_,,_m;r,,v +
O<gq,p,v<m

gpy—g—p—v T+ ]}

T3*(h) = eXp[ Z BS(U)(quvé‘—q—p—v + é‘—qpvgq—p—v + Cq—pvé‘—qp—v

O<gq,p,v<m

+§—q—pv§qp—v)i| (218)
andAi(q, h), ... are defined by the expressions
Ai(g, h) = cosh X — sinh 2K; cosg + «a(h, q) sinh 2K, sing
A3z(v, h) = cosh X3 — sinh 2K3 cosv + a(h, v) sinh 2K3 sinv
a(h, g)[cosh 2K1 + sinh 2K cosg] + sinh 2K; sing

Bi(q, h) =
1g. #) Axlq, h)
a(h, v)[cosh K3 + sinh 2K3 cosv] + sinh 2K3 sinv
B3(v, h) =
Az(v, h)
a(h,q):taan(h/Z)% ah,v) = tanr?(h/z)1 COS”. (2.19)
q

Inthe formula forZ3, (k) the(+) sign means that we consider the case of even states: +
with respect to the operatcff, (2.16). Itis obvious that forr = 0 we have the 3D Ising model
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for a vanishing magnetic field. Then, f&; = 0 (K, = 0 or K3 = 0) the expression (2.17)
for the statistical sum describes the 2D Ising model in an external magnetic field [1].

3. Solution

Let us consider the calculation of the free energy per one Ising spin in an external magnetic
field in the approximation described briefly in the introduction. For this aim, let us consider
the operatorg’(h) and T3 (k) in the ‘coordinate’ representation

3ot
Tf (h) = eXp[ Z Z a(s)anmkanﬂ,mki|

nmk s=1
K—k

T3 (h) = exp[ > c(l)enm,kﬂenmk} (3.1)
nmk =1

where the ‘weightsa(s) andc(/) are defined by the formulae

1 ; x5 * 1_Zf
a(s) = N O<qz<ﬂ 2Bl(q) Sln(sq) =2z; t tanl’? hlm s=1223 ...
cl) = 1 > 2B3v)sin(v) = z3' +tanf?h*l_—Z§I 1=1,23 (3.2)
TR - *(1-23)2 . '

We have introduced renormalized quantitiés , 77 3) which defined as follows:
sinh 2K 5 = By 3[sinh 2K 5(1 — tantf (h/2)]
cosh2K; 5) = B s[cosh K1 3 + tantf(h/2) sinh 2K 3]
B1z = [1+ 2tanif(h/2) sinh 2K 3 exp(2K 1 3)] /2

B1.3EXP(2K 1 3)
costf K,

These formulae are valid fqiK1 3 > 0). As in the case of the 2D Ising model [1, 18], in
this case one can also introduce a diagrammatic representation for the vacuum matrix element
S = (0|5 (W) T>T; (h)|0). The diagrammatic representation for the vacuum matrix element
S = (0|T5 (W) T>T; (h)|0) is reduced to the calculation of the generating function for the
Hamiltonian graphs on the simple culfi¥§ x M x K) lattice which is by no means a trivial
problem. Computation of the vacuum matrix elemé&ntwhich enters the formulé2.17)

for Z3,(h) in the general case, where the ‘weights’ (3.2) are arbitrary is, at least at present,
impossible. Nevertheless, there exists a special case in which we can calculate the quantity
inthe 3D case. Namely, this is the case where the ‘weights’ (3.2) are independantef In

this case one should putthe parametérsg equal to zer@K; 3 = 0) informula (2.13), and then
express the operatoT#’ in terms of the Fermg-operators (2.11) of creation and annihilation,
having in mind the calculation of. After transition to the momentum representation, one
should calculate the vacuum matrix elemstitys, ys, z2)

$*(y1, 3, 22) = (OIT' (9)T2T" (y)10)  yrz=tanifhis
wherez, = tanhKj,, so the calculation of*(ys, ys3, z2) becomes trivial. (Here we have
introduced the following change of notationy2 — h, for the operatof; andh/2 — h3
for the operatorz",f.) The result of the calculations fo¥ (y1, y3, z2) can be written down as:

§*(y1. v3: 72) = (2 cosif K"¥/2  TT [(1—2z2co8p +25)(L — cosp)
O<gpv<m

tanif i} ; = tantf(h/2) (3.3)

+275(y1 + y3) SN p + y1ys(1 + 2z, cosp + z3) (1 + cosp)]*. (3.4)
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It can be shown that the expression

—BF(h) = lim

1
ylim In[(Zcosﬁh/z)NMK( ]_[ A‘l‘(q)>< ]_[ Ag(v)>

O<gpv<m O<gpv<m

x 8" (y1, z2, ys)}

describing, atk13 = 0, y; = y3 = tanlf i/2, the free energy for the 1D Ising model in the
thermodynamic limit, is reduced exactly to the classic Ising result.

This result (3.4) can be used further to calculate the free energy in the approximation
discussed above (1.3). For this aim, let us note that the conditior?[hqgh(l — zis)z] -1
are equivalent, accordingly to (3.3), to the conditi@xp(—2K13)(1 — tantf h/2) — 0).
It follows from this equation that for fixed/; 3 = const,H = cons) these conditions are
satisfied for such temperaturEswhen(/2) ~ ¢ =%, ¢ « 1. Inthis case we can use the result
(3.4). Namely, let us consider the formulae (2.19)Bgg, written in terms of the renormalized
parametershy ;, K7 3):

tanif 13 5(sing(v)/[1 — cosq ()] + 2z} 5 Sing (v)
1— 2z% ycosq(v) + 25 42
wherez] ; = tanhK 7 ;. Next, since the following equalities are satisfied,
i3 z13(1 —tantt r/2)
14242 1+2stantfh/2+22,

then, if we introduce a small parameterfitanh/2)] ~ ¢ (¢ <« 1) and expandy 3 into a
power series im (z7 3 ~ ¢), we obtain

B13= (3.5)

(tantf hf 5 + 225 5) sing (v) 5
1 — cosg(v) e
This formula gives the following expressions for the ‘weight§&') andc(l) from (3.2) in this
approximation
a(s) = tanif b + 273 c(l) = tanif b} + 223 (3.6)

with the accuracy to the small parameter®. As a result in this approximation the ‘weights’
a(s) andc(l) do not depend o, /). Finally, if we substitute into the expression (3.4) for
S*(y1, y3, z2) the parameters; — a(s) andys — c¢(I) from (3.6), we have the following
formula for the free energy per one Ising sgish () in the thermodynamic limit:

Bi3z =

1 T
—BF3p(h) ~ In(2¥2 coshK; coshK, coshK costt h/2) + o / In[(1 — 2z5cosp + z3)
T Jo

x (1 — cosp) + 2zp(tant? ki + tant? il + 225 + 2%) sir? p + (tant? hj + 2z5)
x (tankf i + 2z35) (1 + 222 cosp + z2)(1 + cosp)] dp (3.7)

whereg = 1/kgT, 7o = tanhK; andhi3 andKf3 are coupled withk andK 3 by the relations
(3.3). One can show that, as it was done for the 1D and 2D Ising models [1], in the case of
the odd stategr, = —1) with respect to the operata{?, (2.16), the formula forFsp(h) is
described in the thermodynamic limit by (3.7). Let us note that the asymptotics (3.7) obtained
above can also be applied in the case of rather strong magnetiqfigldas far as the condition
(1—tanhh) ~ ¢, ¢ <« 1, (T = cons) is satisfied.

Itis well known that there are a great number of publications (see, for example, the series
in many volumesPhase Transitions and Critical Phenomeaed C Domb ad M S Green)
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related, in some way or other, to low- and high-temperature expansions for the Ising model in
a zero, as well as in a non-zero, external magnetic field (see, for example, [6-9]). It should
be noted that the form of these expansions is not practically suitable for the calculations and
phase diagram constructions, which can be seen from the continuous attempts to search for
new approaches to the solution of the problem (see, for example, [10-12]). From this point
of view, our result (3.7) is just another attempt of that kind. As it follows from the derivation
procedure, the validity range in the field and temperatur& of expansion (3.7) is large
enough. In other words, the boundaries of this validity range are ‘floating’ and this effect
makes our result different from the others.

4. Final remarks

The main result given by formula (3.7) can be applied, in the setting of equilibrium
thermodynamics, to the analysis of the 3D Ising magnetic, lattice gas and to the 3D models
of binary alloys [19, 20] under the conditions for the temperature and magnetic field given
by (1.3). Such analyses, as well as the construction of appropriate phase diagrams for the
models mentioned above is, in our opinion, of great interest. They deserve to be considered
in a separate publication.

Here we also make some important remarks. The preliminary numerical analysis of
the solution (3.7) and its comparison with the results for the 3D Ising model in the external
field obtained previously by other authors (see, for example, [6, 8]) demonstrate the good
agreement between the results for the common domain of the parariéigrs /) accurate
up to an accepted approximation. However, the (3.7) solution is of some specific character,
since the applicability of (3.7) depends on the external magneticfleddd can approach the
temperatur@ > T.. The pointisthatin deriving (3.7) we actually summed up the infinite series
taking into account the main terms for the given values of the param@ferg). Therefore,
we should expect that (3.7) would be suitable for the models of lattice gases and binary alloys
[17,19,20]. On the other hand, comparison of solution (3.7) with recent results obtained
for the Ising model in an external magnetic field (see, for example, [22] and the references
therein) is confronted with serious difficulties and further investigations are required. These
difficulties arise from the fact that these results look as if they are fragmentary by character,
because as a rule they are the by-product of investigations of other statistical mechanics and
lattice quantum field theory models. For this reason, very often it is difficult to determine the
field of application of the results obtained and to perform any comparison between them. A
review of the great number of works devoted to the numerical simulation of the Ising model
in an external field is also beyond the scope of this paper; this will be done elsewhere.

The other important feature of the method presented here is the possibility of deriving the
expressions for the free energy of the 3D Ising model in the limiting case of the magnetic field
tendingto zer¢H — 0, N, M, K — 00), ifwe know the exact solution for the 3D Ising model
inazero external magnetic field = 0). This possibility results from equations (3.2) and (3.3)
describing the renormalized interaction constdits and corresponds, as was shownin[1], to
the results obtained by Yang [21] for the 2D Ising model. In conclusion, it is worth mentioning
that as far as our ideas of introducing the Hamiltonian graphs into this field of theoretical
physics is concerned, they have already been taken up by others (see, for example, [23]).
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