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Low-temperature asymptotics for the Ising model in an
external magnetic field

Martin S Kochmánski†
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Abstract. The paper presents a method for calculating the low-temperature asymptotics of the
free energy of the three-dimensional Ising model in an external magnetic field(H 6= 0). In this
work an approach on the problem is employed, the main ideas of which were reported by the
author earlier by an example of the two-dimensional Ising model in an external magnetic field.
The results obtained are valid in the wide range of temperature and magnetic field values fulfilling
the condition [1− tanh2(h/2)] ∼ ε, for ε � 1, whereh = βH , β is the inverse temperature and
H is the external magnetic field.

1. Formulation of the problem

As is well known, an exact solution for the two-dimensional (2D) Ising model in an external
magnetic field(H 6= 0) has not yet been found. In the case of the three-dimensional (3D) Ising
model an exact solution for a vanishing magnetic field does not exist(H = 0), to say nothing
of the case of non-zero magnetic field. Despite the great successes in the investigation of
Ising models made by means of the renormalization group method [2] and other approximate
methods [1, 3–12] the problem of the calculation of various asymptotics for the 2D and 3D
Ising models in the external magnetic field(H 6= 0) is still of great importance. In [1, 16] we
calculated the low-temperature and high-temperature asymptotics for the 2D Ising model in
an external magnetic field(H 6= 0), as well as the free energy for this model in the limit of an
asymptotically vanishing magnetic field. In this paper we briefly discuss the calculation of the
low-temperature asymptotics for the free energy in the 3D Ising model in an external magnetic
field (H 6= 0), following the approach and the ideas we have introduced in [1].

Let us consider a cubic lattice built ofN rows,M columns andK planes, to the vertices of
which are assigned the numbersσnmk from the two-entry set±1. These quantities throughout
this paper will be referred to as the Ising ‘spins’. The multi-index(nmk) numbers vertices
of the lattice, withn numbering rows,m numbering columns, andk numbering planes. The
Ising model with nearest-neighbour interaction in an external magnetic field is described by
the Hamiltonian of the form

H = −
NMK∑

(n,m,k)=1

(J1σnmkσn+1,mk + J2σnmkσn,m+1,k + J3σnmkσnm,k+1 +Hσnmk) (1.1)

taking into account an anisotropy of the interaction between the nearest neighbours(J1,2,3 > 0),
and the interaction of the spinsσnmk with external magnetic fieldH , directed ‘up’(σnmk = +1).
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The main problem consists of the calculation of the statistical sum for the system:

Z3(h) =
∑

σ111=±1

. . .
∑

σNMK=±1

e−βH =
∑

{σnmk=±1}
exp

[∑
nmk

(K1σnmkσn+1,mk +K2σnmkσn,m+1,k

+K3σnmkσnm,k+1 + hσnmk)

]
(1.2)

whereK1,2,3 = βJ1,2,3, h = βH , β = 1/kBT . Typical boundary conditions for the variables
σnmk are the periodic ones. We take this standard assumption everywhere is the following. Let
us note here that the statistical sum (1.2) is symmetric with respect to the change(h→−h).

In this paper we consider a limited version of the problem, that is the calculation of the
low-temperature asymptotics for the free energy in the 3D Ising model in an external magnetic
field. More precisely, if the coupling constants(J1,2,3 = const) and external magnetic field
(H = const) are given, we consider the temperatures satisfying the conditionh ∼ ε−1, ε � 1.
To be more exact, we introduce a small parameter in the following way:

1− tanh2(h/2) ∼ ε ε � 1. (1.3)

Then we consider the problem of the calculation of the free energy per one Ising spin in the
thermodynamic limit, with an accuracy up to the order of∼ε2 in expansions of the operators
associated with the spin interaction with an external magnetic field, as well as the interaction
of spin with each other (details of the approximation used will be presented later). To the
best of our knowledge, the problem formulated in this way has not been considered in existing
literature and is of considerable importance.

2. Partition function

Let us consider an auxiliary 4D Ising model in an external magnetic fieldH on a simple
4D lattice(N × M × K × L). We write the Hamiltonian for the 4D Ising model with the
nearest-neighbour interaction in the form

H=−
∑
n,m,k,l

(J1σnmklσn+1,mkl + J2σnmklσn,m+1,kl+J3σnmklσnm,k+1,l+J4σnmklσnmk,l+1+Hσnmkl)

(2.1)

taking into account the anisotropy of the interaction between the nearest neighbours(J1,2,3,4 >

0), and the interaction of the spinsσnmkl with the external magnetic fieldH , directed ‘up’
(σnmkl = +1). In equation (2.1) the multi-index(nmkl) numbers the vertices of the 4D lattice,
and the indices(n,m, k, l) take the values from 1 to(N,M,K,L), respectively. As in the
case of the 3D Ising model, we introduce periodic boundary conditions for the variablesσnmkl .
Then we write the partition functionZ4(h) in the form

Z4(h) =
∑

σ1111=±1

. . .
∑

σNMKL=±1

e−βH =
∑

{σnmkl=±1}
exp

[∑
nmkl

(K1σnmklσn+1,mkl

+K2σnmklσn,m+1,kl +K3σnmklσnm,k+1,l +K4σnmklσnmk,l+1 + hσnmkl)

]
(2.2)

where the quantitiesKi andh are defined as for (1.2) [13, 14]. We can rewrite expression (2.2)
using the well known method of the transfer matrix, in the form of a trace from theLth power
of the operator̂T :

Z4(h) = Tr(T̂ )L T̂ = T4T
1/2
h T3T2T1T

1/2
h (2.3)
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where the operatorsT1,2,3,4,h are defined by the formulae

T1 = exp

(
K1

∑
nmk

τ znmkτ
z
n+1,mk

)
T2 = exp

(
K2

∑
nmk

τ znmkτ
z
n,m+1,k

)
(2.4)

T3 = exp

(
K3

∑
nmk

τ znmkτ
z
nm,k+1

)
T4 = (2 sinh 2K4)

NMK/2 exp

(
K∗4

∑
nmk

τ xnmk

)
(2.5)

Th = exp

(
h
∑
nmk

τ znmk

)
(2.6)

and the quantitiesK4 andK∗4 are coupled by the following relations:

tanh(K4) = exp(−2K∗4) or sinh 2K4 sinh 2K∗4 = 1. (2.7)

The Pauli spin matricesτ x,y,znmk commute for(nmk) 6= (n′m′k′), and for given(nmk) these
matrices satisfy the usual relations [17]. It is easy to see that the matricesT1,2,3,h commute
with each other, but do not commute with the matrixT4. If the quantitiesKi = 0 (i = 1, 2, 3),
we immediately obtain the well known expressions describing the 3D Ising model on a simple
cubic lattice. Namely, the transition to the 3D Ising model with respect to the coupling
constantsK1,K2 orK3 is realized by taking(K1 = 0), (K2 = 0), or (K3 = 0), and removing
the summation overn (N = 1), m (M = 1) or overk (K = 1), respectively. As a result we
obtain the standard expressions [13] for the 3D Ising model in an external magnetic field. In
this process the operatorsTi (i = 1, 2, 3) in every one of the cases are identically equal to the
unit operator(Ti ≡ 1̂). A slight different situation appears in the case of the transition to the 3D
Ising model with respect to the coupling constantK4. In this case we take(K4 = 0, L = 1),
i.e. we remove the summation overl. As a consequence, we obtain the following expression
for the operatorT4 from (2.5):

T ∗4 ≡ T4(K4 = 0) =
∏
nmk

(1 + τ xnmk) (2.8)

where we have used the relation (2.7). Then, after transition to the limit(K4 = 0, L = 1) in
(2.3), we can write the following expression for the partition function for the 3D Ising model

Z3D(h) = Tr(T ∗4 T
1/2
h T3T2T1T

1/2
h ) (2.9)

where the matricesTi are defined as in (2.4), (2.6) and (2.8). Now we go over to the fermionic
representation. For this purpose one should write the matricesTi in terms of the Pauli operators
τ±nmk [14]

τ±nmk = 1
2(τ

z
nmk ± iτ ynmk) (2.10)

which satisfy anticommutation relations for one vertex, and which commute for different
vertices. Here, instead of Pauli operators

τ ′±nmk = 1
2(τ
′x
nmk ± iτ ′ynmk)

we introduced, following [14] the new ones,τ±nmk by means of formulae (2.10). The point is
that the transformations

τ ′x → τ z τ ′y →−τ y τ ′z → τ x

are the canonical transformations, which means that they are the same Pauli matrices which do
no change the commutation relations. These transformations are introduced in order to have
the exponents (2.4)–(2.6) containing only quadratic (T1234 operators in (2.6)) forms of Pauli
operatorsτ±nmk but not the quaternary forms of these operators. As the next step one can move
on from the representation by Pauli operators (2.10) to the representation by Fermi creation
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and annihilation operators [1]. It can be easily checked that for the 3D case the generalized
Jordan–Wigner type transformations are of the form [16]

τ+
nmk = exp

[
iπ

( N∑
s=1

M∑
p=1

k−1∑
q=1

α†
spqαspq +

N∑
s=1

m−1∑
p=1

α
†
spkαspk +

n−1∑
s=1

α
†
smkαsmk

)]
α

†
nmk

τ+
nmk = exp

[
iπ

( N∑
s=1

M∑
p=1

k−1∑
q=1

β†
spqβspq +

n−1∑
s=1

M∑
p=1

β
†
spkβspk +

m−1∑
p=1

β
†
npkβnpk

)]
β

†
nmk

τ+
nmk = exp

[
iπ

( N∑
s=1

m−1∑
p=1

K∑
q=1

γ†
spqγspq +

N∑
s=1

k−1∑
q=1

γ†
smqγsmq +

n−1∑
s=1

γ
†
smkγsmk

)]
γ

†
nmk

τ+
nmk = exp

[
iπ

( N∑
s=1

m−1∑
p=1

K∑
q=1

η†
spqηspq +

n−1∑
s=1

K∑
q=1

η†
smqηsmq +

k−1∑
q=1

η†
nmqηnmq

)]
η
†
nmk

τ+
nmk = exp

[
iπ

( n−1∑
s=1

M∑
p=1

K∑
q=1

ω†
spqωspq +

M∑
p=1

k−1∑
q=1

ω†
npqωnpq +

m−1∑
p=1

ω
†
npkωnpk

)]
ω

†
nmk

τ+
nmk = exp

[
iπ

( n−1∑
s=1

M∑
p=1

K∑
q=1

θ†
spqθspq +

m−1∑
p=1

K∑
q=1

θ†
npqθnpq +

k−1∑
q=1

θ†
nmqθnmq

)]
θ
†
nmk (2.11)

and analogously for the operatorsτ−nmk which are the Hermitian conjugations to (2.11). In
[1] we obtained formulae for the relations between various Fermi operators and commutation
relations for them for 2D case, which can be generalized to the 3D case. Indeed, the following
relationships for the local occupation numbers are valid:

τ+
nmkτ

−
nmk = α†

nmkαnmk = β†
nmkβnmk = γ†

nmkγnmk = η†
nmkηnmk = ω†

nmkωnmk = θ†
nmkθnmk. (2.12)

Then, applying the expressions (2.10)–(2.12) and considering results from [1], we can write
the partition function (2.9) in the form

Z3D(h) = (2 cosh2 h/2)NMK〈0|T ∗|0〉 = A〈0|U +µ2CUD|0〉 U ≡ T lhT3T2T1T
r
h (2.13)

whereA = (2 cosh2 h/2)NMK andµ = tanh(h/2), and the operatorsT1,2,3, T l,rh andC,D are
of the form

T1 = exp

[
K1

N,M,K∑
n,m,k=1

(α
†
nmk − αnmk)(α†

n+1,mk + αn+1,mk)

]

T2 = exp

[
K2

N,M,K∑
n,m,k=1

(β
†
nmk − βnmk)(β†

n,m+1,k + βn,m+1,k)

]

T3 = exp

[
K3

N,M,K∑
n,m,k=1

(θ
†
nmk − θnmk)(θ†

nm,k+1 + θnm,k+1)

]
(2.14)

and

T rh = exp

{
µ2

[∑
nmk

N−n∑
s=1

α
†
nmkα

†
n+s,mk +

∑
nn′mk

M−m∑
t=1

α
†
nmkα

†
n′,m+t,k +

∑
nn′mm′k

K−k∑
l=1

α
†
nmkα

†
n′m′,k+l

]}

T lh = exp

{
µ2

[∑
nmk

K−k∑
l=1

θnm,k+lθnmk +
∑
nmkk′

M−m∑
t=1

θn,m+t,kθnmk′ +
∑

nmm′kk′

N−n∑
s=1

θn+s,mkθnm′k′

]}
(2.15)

C =
∑
nmk

θnmk D =
∑
nmk

α
†
nmk.
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Here and below
∑

n,m,... means summation over the complete set of indices (n =
1, . . . , N;m = 1, . . . ,M; etc). It is obvious that the operatorĜ

Ĝ = (−1)Ŝ Ŝ =
∑
nmk

α
†
nmkαnmk (2.16)

whereŜ is the operator of the total number of particles, commutes with the operatorT ∗, (2.13).
Therefore, we can divide all states of the operatorT ∗ into states with an even(λĜ = +1) or
odd number of particles(λĜ = −1) with respect to the operator̂G, (2.16). The form of the
operatorsT1,2,3 does not change under such transformation, only the boundary conditions for
the operators(αnmk, . . .) do. In the case of even states(λĜ = +1), antiperiodic boundary
conditions are chosen and in the case of odd states, periodic ones are chosen [1].

The next step is the transition to the momentum representation:

α
†
nmk =

exp(iπ/4)

(NMK)1/2

∑
qpν

e−i(nq+mp+kν)ξ†
qpν β

†
nmk → η†

qpν θ
†
nmk → ζ†

qpν.

Here we have introduced, in terms of the occupation numbers for fixed(qpν), the corresponding
ξ -, η- andζ -Fermi creation and annihilation operators in the finite-dimensional Fock space of
28 = 256 dimensions. Then, after a series of transformations and calculations we arrive at the
following formula for the partition function (2.13):

Z+
3D(h) = A

( ∏
0<q,p,ν<π

A4
1(q)

)( ∏
0<q,p,ν<π

A4
3(ν)

)
〈0|T ∗3 (h)T2T

∗
1 (h)|0〉 (2.17)

where the operatorsT ∗1 (h), T2 andT ∗3 (h) are of the form

T ∗1 (h) = exp

[ ∑
0<q,p,ν<π

B1(q)(ξ
†
−q−p−νξ

†
qpν + ξ†

−q−pνξ
†
qp−ν + ξ†

−qp−νξ
†
q−pν + ξ†

−qpνξ
†
q−p−ν)

]
T2 = exp

{
2K2

∑
0<q,p,ν<π

[cosp(η†
qpνηqpν + · · ·) + sinp(η†

−q−p−νη
†
qpν + · · ·

+ηqpνη−q−p−ν + · · ·]
}

T ∗3 (h) = exp

[ ∑
0<q,p,ν<π

B3(ν)(ζqpνζ−q−p−ν + ζ−qpνζq−p−ν + ζq−pνζ−qp−ν

+ζ−q−pνζqp−ν)
]

(2.18)

andA1(q, h), . . . are defined by the expressions

A1(q, h) = cosh 2K1− sinh 2K1 cosq + α(h, q) sinh 2K1 sinq

A3(ν, h) = cosh 2K3− sinh 2K3 cosν + α(h, ν) sinh 2K3 sinν

B1(q, h) = α(h, q)[cosh 2K1 + sinh 2K1 cosq] + sinh 2K1 sinq

A1(q, h)

B3(ν, h) = α(h, ν)[cosh 2K3 + sinh 2K3 cosν] + sinh 2K3 sinν

A3(ν, h)

α(h, q) = tanh2(h/2)
1 + cosq

sinq
α(h, ν) = tanh2(h/2)

1 + cosν

sinν
. (2.19)

In the formula forZ+
3D(h) the(+) sign means that we consider the case of even states(λĜ = +1)

with respect to the operator̂G, (2.16). It is obvious that forh = 0 we have the 3D Ising model
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for a vanishing magnetic field. Then, forK1 = 0 (K2 = 0 orK3 = 0) the expression (2.17)
for the statistical sum describes the 2D Ising model in an external magnetic field [1].

3. Solution

Let us consider the calculation of the free energy per one Ising spin in an external magnetic
field in the approximation described briefly in the introduction. For this aim, let us consider
the operatorsT ∗1 (h) andT ∗3 (h) in the ‘coordinate’ representation

T ∗1 (h) = exp

[∑
nmk

N−n∑
s=1

a(s)α
†
nmkα

†
n+s,mk

]

T ∗3 (h) = exp

[∑
nmk

K−k∑
l=1

c(l)θnm,k+lθnmk

]
(3.1)

where the ‘weights’a(s) andc(l) are defined by the formulae

a(s) = 1

N

∑
0<q<π

2B1(q) sin(sq) = z∗1s + tanh2 h∗1
1− z∗1s
(1− z∗1)2

s = 1, 2, 3, . . .

c(l) = 1

K

∑
0<ν<π

2B3(ν) sin(lν) = z∗3l + tanh2 h∗3
1− z∗3l
(1− z∗3)2

l = 1, 2, 3, . . . . (3.2)

We have introduced renormalized quantities(K∗1,3, h
∗
1,3) which defined as follows:

sinh 2K∗1,3 = β1,3[sinh 2K1,3(1− tanh2(h/2)]

cosh(2K∗1,3) = β1,3[cosh 2K1,3 + tanh2(h/2) sinh 2K1,3]

β1,3 = [1 + 2 tanh2(h/2) sinh 2K1,3 exp(2K1,3)]
−1/2

tanh2 h∗1,3 = tanh2(h/2)
β1,3 exp(2K1,3)

cosh2K∗1,3
. (3.3)

These formulae are valid for(K1,3 > 0). As in the case of the 2D Ising model [1, 18], in
this case one can also introduce a diagrammatic representation for the vacuum matrix element
S ≡ 〈0|T ∗3 (h)T2T

∗
1 (h)|0〉. The diagrammatic representation for the vacuum matrix element

S ≡ 〈0|T ∗3 (h)T2T
∗
1 (h)|0〉 is reduced to the calculation of the generating function for the

Hamiltonian graphs on the simple cubic(N ×M × K) lattice which is by no means a trivial
problem. Computation of the vacuum matrix elementS, which enters the formula(2.17)
for Z+

3D(h) in the general case, where the ‘weights’ (3.2) are arbitrary is, at least at present,
impossible. Nevertheless, there exists a special case in which we can calculate the quantityS

in the 3D case. Namely, this is the case where the ‘weights’ (3.2) are independent ofl ands. In
this case one should put the parametersK1,3 equal to zero(K1,3 = 0) in formula (2.13), and then
express the operatorsT l,rh in terms of the Fermiβ-operators (2.11) of creation and annihilation,
having in mind the calculation ofS. After transition to the momentum representation, one
should calculate the vacuum matrix elementS∗(y1, y3, z2)

S∗(y1, y3, z2) ≡ 〈0|T l(y3)T2T
r(y1)|0〉 y1,3 ≡ tanh2 h1,3

wherez2 = tanhK2, so the calculation ofS∗(y1, y3, z2) becomes trivial. (Here we have
introduced the following change of notation:h/2→ h1 for the operatorT rh andh/2→ h3

for the operatorT lh.) The result of the calculations forS∗(y1, y3, z2) can be written down as:

S∗(y1, y3, z2) = (2 cosh2K2)
NMK/2

∏
0<qpν<π

[(1− 2z2 cosp + z2
2)(1− cosp)

+2z2(y1 + y3) sin2p + y1y3(1 + 2z2 cosp + z2
2)(1 + cosp)]4. (3.4)
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It can be shown that the expression

−βF(h) = lim
NMK→∞

1

NMK
ln

[
(2 cosh2 h/2)NMK

( ∏
0<qpν<π

A4
1(q)

)( ∏
0<qpν<π

A4
3(ν)

)
×S∗(y1, z2, y3)

]
describing, atK1,3 = 0, y1 = y3 = tanh2 h/2, the free energy for the 1D Ising model in the
thermodynamic limit, is reduced exactly to the classic Ising result.

This result (3.4) can be used further to calculate the free energy in the approximation
discussed above (1.3). For this aim, let us note that the condition [tanh2 h∗1,3/(1− z∗1,3)2] → 1
are equivalent, accordingly to (3.3), to the condition(exp(−2K1,3)(1 − tanh2 h/2) → 0).
It follows from this equation that for fixed(J1,3 = const,H = const) these conditions are
satisfied for such temperaturesT , when(h/2) ∼ ε−1, ε � 1. In this case we can use the result
(3.4). Namely, let us consider the formulae (2.19) forB1,3, written in terms of the renormalized
parameters(h∗1,3,K

∗
1,3):

B1,3 =
tanh2 h∗1,3(sinq(ν)/[1− cosq(ν))] + 2z∗1,3 sinq(ν)

1− 2z∗1,3 cosq(ν) + z∗1,3
2 (3.5)

wherez∗1,3 = tanhK∗1,3. Next, since the following equalities are satisfied,

z∗1,3
1 + z∗1,3

2 =
z1,3(1− tanh2 h/2)

1 + 2z1,3 tanh2 h/2 + z2
1,3

then, if we introduce a small parameter [1− tanh(h/2)] ∼ ε (ε � 1) and expandB1,3 into a
power series inε (z∗1,3 ∼ ε), we obtain

B1,3 =
(tanh2 h∗1,3 + 2z∗1,3) sinq(ν)

1− cosq(ν)
+∼ε2.

This formula gives the following expressions for the ‘weights’a(s) andc(l) from (3.2) in this
approximation

a(s) = tanh2 h∗1 + 2z∗1 c(l) = tanh2 h∗3 + 2z∗3 (3.6)

with the accuracy to the small parameter∼ε2. As a result in this approximation the ‘weights’
a(s) andc(l) do not depend on(s, l). Finally, if we substitute into the expression (3.4) for
S∗(y1, y3, z2) the parametersy1 → a(s) andy3 → c(l) from (3.6), we have the following
formula for the free energy per one Ising spinF3D(h) in the thermodynamic limit:

−βF3D(h) ∼ ln(23/2 coshK∗1 coshK2 coshK∗3 cosh2 h/2) +
1

2π

∫ π

0
ln[(1− 2z2 cosp + z2

2)

×(1− cosp) + 2z2(tanh2 h∗1 + tanh2 h∗3 + 2z∗1 + 2z∗3) sin2p + (tanh2 h∗1 + 2z∗1)

×(tanh2 h∗3 + 2z∗3)(1 + 2z2 cosp + z2
2)(1 + cosp)] dp (3.7)

whereβ = 1/kBT , z2 = tanhK2 andh∗1,3 andK∗1,3 are coupled withh andK1,3 by the relations
(3.3). One can show that, as it was done for the 1D and 2D Ising models [1], in the case of
the odd states(λĜ = −1) with respect to the operator̂G, (2.16), the formula forF3D(h) is
described in the thermodynamic limit by (3.7). Let us note that the asymptotics (3.7) obtained
above can also be applied in the case of rather strong magnetic fields(H), as far as the condition
(1− tanhh) ∼ ε, ε � 1, (T = const) is satisfied.

It is well known that there are a great number of publications (see, for example, the series
in many volumesPhase Transitions and Critical Phenomenaed C Domb and M S Green)
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related, in some way or other, to low- and high-temperature expansions for the Ising model in
a zero, as well as in a non-zero, external magnetic field (see, for example, [6–9]). It should
be noted that the form of these expansions is not practically suitable for the calculations and
phase diagram constructions, which can be seen from the continuous attempts to search for
new approaches to the solution of the problem (see, for example, [10–12]). From this point
of view, our result (3.7) is just another attempt of that kind. As it follows from the derivation
procedure, the validity range in the fieldH and temperatureT of expansion (3.7) is large
enough. In other words, the boundaries of this validity range are ‘floating’ and this effect
makes our result different from the others.

4. Final remarks

The main result given by formula (3.7) can be applied, in the setting of equilibrium
thermodynamics, to the analysis of the 3D Ising magnetic, lattice gas and to the 3D models
of binary alloys [19, 20] under the conditions for the temperature and magnetic field given
by (1.3). Such analyses, as well as the construction of appropriate phase diagrams for the
models mentioned above is, in our opinion, of great interest. They deserve to be considered
in a separate publication.

Here we also make some important remarks. The preliminary numerical analysis of
the solution (3.7) and its comparison with the results for the 3D Ising model in the external
field obtained previously by other authors (see, for example, [6, 8]) demonstrate the good
agreement between the results for the common domain of the parameters(K1,2,3, h) accurate
up to an accepted approximation. However, the (3.7) solution is of some specific character,
since the applicability of (3.7) depends on the external magnetic fieldH and can approach the
temperatureT > Tc. The point is that in deriving (3.7) we actually summed up the infinite series
taking into account the main terms for the given values of the parameters(H, T ). Therefore,
we should expect that (3.7) would be suitable for the models of lattice gases and binary alloys
[17, 19, 20]. On the other hand, comparison of solution (3.7) with recent results obtained
for the Ising model in an external magnetic field (see, for example, [22] and the references
therein) is confronted with serious difficulties and further investigations are required. These
difficulties arise from the fact that these results look as if they are fragmentary by character,
because as a rule they are the by-product of investigations of other statistical mechanics and
lattice quantum field theory models. For this reason, very often it is difficult to determine the
field of application of the results obtained and to perform any comparison between them. A
review of the great number of works devoted to the numerical simulation of the Ising model
in an external field is also beyond the scope of this paper; this will be done elsewhere.

The other important feature of the method presented here is the possibility of deriving the
expressions for the free energy of the 3D Ising model in the limiting case of the magnetic field
tending to zero(H → 0, N,M,K →∞), if we know the exact solution for the 3D Ising model
in a zero external magnetic field(H = 0). This possibility results from equations (3.2) and (3.3)
describing the renormalized interaction constantsK∗1,3 and corresponds, as was shown in [1], to
the results obtained by Yang [21] for the 2D Ising model. In conclusion, it is worth mentioning
that as far as our ideas of introducing the Hamiltonian graphs into this field of theoretical
physics is concerned, they have already been taken up by others (see, for example, [23]).
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